Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ectopically expressed glutaredoxin ROXY19 negatively regulates the detoxification pathway in Arabidopsis thaliana.

Identifieur interne : 000465 ( Main/Exploration ); précédent : 000464; suivant : 000466

Ectopically expressed glutaredoxin ROXY19 negatively regulates the detoxification pathway in Arabidopsis thaliana.

Auteurs : Li-Jun Huang [Allemagne] ; Ning Li [Allemagne] ; Corinna Thurow [Allemagne] ; Markus Wirtz [Allemagne] ; Rüdiger Hell [Allemagne] ; Christiane Gatz [Allemagne]

Source :

RBID : pubmed:27624344

Descripteurs français

English descriptors

Abstract

BACKGROUND

Glutaredoxins (GRXs) are small proteins which bind glutathione to either reduce disulfide bonds or to coordinate iron sulfur clusters. Whereas these well-established functions are associated with ubiquitously occurring GRXs that encode variants of a CPYC or a CGFS motif in the active center, land plants also possess CCxC/S-type GRXs (named ROXYs) for which the biochemical functions are yet unknown. ROXYs physically and genetically interact with bZIP transcription factors of the TGA family. In Arabidopsis, ectopically expressed ROXY19 (originally named GRX480 or GRXC9) negatively regulates expression of jasmonic acid/ethylene-induced defense genes through an unknown mechanism that requires at least one of the redundant transcription factors TGA2, TGA5 or TGA6.

RESULTS

Ectopically expressed ROXY19 interferes with the activation of TGA-dependent detoxification genes. Similar to the tga2 tga5 tga6 mutant, 35S:ROXY19 plants are more susceptible to the harmful chemical TIBA (2,3,5-triiodobenzoic acid). The repressive function of ROXY19 depends on the integrity of the active site, which can be either CCMC or CPYC but not SSMS. Ectopic expression of the related GRX ROXY18/GRXS13 also led to increased susceptibility to TIBA, indicating potential functional redundancy of members of the ROXY gene family. This redundancy might explain why roxy19 knock-out plants did not show a phenotype with respect to the regulation of the TIBA-induced detoxification program. Complementation of the tga2 tga5 tga6 mutant with either TGA5 or TGA5C186S, in which the single potential target-site of ROXY19 had been eliminated, did not reveal any evidence for a critical redox modification that might be important for controlling the detoxification program.

CONCLUSIONS

ROXY19 and related proteins of the ROXY gene family can function as negative regulators of TGA-dependent promoters controlling detoxification genes.


DOI: 10.1186/s12870-016-0886-1
PubMed: 27624344
PubMed Central: PMC5022239


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ectopically expressed glutaredoxin ROXY19 negatively regulates the detoxification pathway in Arabidopsis thaliana.</title>
<author>
<name sortKey="Huang, Li Jun" sort="Huang, Li Jun" uniqKey="Huang L" first="Li-Jun" last="Huang">Li-Jun Huang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Ning" sort="Li, Ning" uniqKey="Li N" first="Ning" last="Li">Ning Li</name>
<affiliation wicri:level="3">
<nlm:affiliation>Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thurow, Corinna" sort="Thurow, Corinna" uniqKey="Thurow C" first="Corinna" last="Thurow">Corinna Thurow</name>
<affiliation wicri:level="3">
<nlm:affiliation>Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wirtz, Markus" sort="Wirtz, Markus" uniqKey="Wirtz M" first="Markus" last="Wirtz">Markus Wirtz</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hell, Rudiger" sort="Hell, Rudiger" uniqKey="Hell R" first="Rüdiger" last="Hell">Rüdiger Hell</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gatz, Christiane" sort="Gatz, Christiane" uniqKey="Gatz C" first="Christiane" last="Gatz">Christiane Gatz</name>
<affiliation wicri:level="3">
<nlm:affiliation>Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany. cgatz@gwdg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27624344</idno>
<idno type="pmid">27624344</idno>
<idno type="doi">10.1186/s12870-016-0886-1</idno>
<idno type="pmc">PMC5022239</idno>
<idno type="wicri:Area/Main/Corpus">000408</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000408</idno>
<idno type="wicri:Area/Main/Curation">000408</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000408</idno>
<idno type="wicri:Area/Main/Exploration">000408</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ectopically expressed glutaredoxin ROXY19 negatively regulates the detoxification pathway in Arabidopsis thaliana.</title>
<author>
<name sortKey="Huang, Li Jun" sort="Huang, Li Jun" uniqKey="Huang L" first="Li-Jun" last="Huang">Li-Jun Huang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Ning" sort="Li, Ning" uniqKey="Li N" first="Ning" last="Li">Ning Li</name>
<affiliation wicri:level="3">
<nlm:affiliation>Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thurow, Corinna" sort="Thurow, Corinna" uniqKey="Thurow C" first="Corinna" last="Thurow">Corinna Thurow</name>
<affiliation wicri:level="3">
<nlm:affiliation>Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wirtz, Markus" sort="Wirtz, Markus" uniqKey="Wirtz M" first="Markus" last="Wirtz">Markus Wirtz</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hell, Rudiger" sort="Hell, Rudiger" uniqKey="Hell R" first="Rüdiger" last="Hell">Rüdiger Hell</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gatz, Christiane" sort="Gatz, Christiane" uniqKey="Gatz C" first="Christiane" last="Gatz">Christiane Gatz</name>
<affiliation wicri:level="3">
<nlm:affiliation>Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany. cgatz@gwdg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Cyclopentanes (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Oxylipins (metabolism)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Triiodobenzoic Acids (toxicity)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides triiodo-benzoïques (toxicité)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Cyclopentanes (métabolisme)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Oxylipines (métabolisme)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Glutaredoxins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Facteurs de transcription</term>
<term>Glutarédoxines</term>
<term>Protéines d'Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>Cyclopentanes</term>
<term>Glutaredoxins</term>
<term>Oxylipins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Cyclopentanes</term>
<term>Facteurs de transcription</term>
<term>Glutarédoxines</term>
<term>Oxylipines</term>
<term>Protéines d'Arabidopsis</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Triiodobenzoic Acids</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Acides triiodo-benzoïques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régions promotrices (génétique)</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Glutaredoxins (GRXs) are small proteins which bind glutathione to either reduce disulfide bonds or to coordinate iron sulfur clusters. Whereas these well-established functions are associated with ubiquitously occurring GRXs that encode variants of a CPYC or a CGFS motif in the active center, land plants also possess CCxC/S-type GRXs (named ROXYs) for which the biochemical functions are yet unknown. ROXYs physically and genetically interact with bZIP transcription factors of the TGA family. In Arabidopsis, ectopically expressed ROXY19 (originally named GRX480 or GRXC9) negatively regulates expression of jasmonic acid/ethylene-induced defense genes through an unknown mechanism that requires at least one of the redundant transcription factors TGA2, TGA5 or TGA6.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Ectopically expressed ROXY19 interferes with the activation of TGA-dependent detoxification genes. Similar to the tga2 tga5 tga6 mutant, 35S:ROXY19 plants are more susceptible to the harmful chemical TIBA (2,3,5-triiodobenzoic acid). The repressive function of ROXY19 depends on the integrity of the active site, which can be either CCMC or CPYC but not SSMS. Ectopic expression of the related GRX ROXY18/GRXS13 also led to increased susceptibility to TIBA, indicating potential functional redundancy of members of the ROXY gene family. This redundancy might explain why roxy19 knock-out plants did not show a phenotype with respect to the regulation of the TIBA-induced detoxification program. Complementation of the tga2 tga5 tga6 mutant with either TGA5 or TGA5C186S, in which the single potential target-site of ROXY19 had been eliminated, did not reveal any evidence for a critical redox modification that might be important for controlling the detoxification program.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>ROXY19 and related proteins of the ROXY gene family can function as negative regulators of TGA-dependent promoters controlling detoxification genes.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27624344</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>08</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2016</Year>
<Month>09</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Ectopically expressed glutaredoxin ROXY19 negatively regulates the detoxification pathway in Arabidopsis thaliana.</ArticleTitle>
<Pagination>
<MedlinePgn>200</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-016-0886-1</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Glutaredoxins (GRXs) are small proteins which bind glutathione to either reduce disulfide bonds or to coordinate iron sulfur clusters. Whereas these well-established functions are associated with ubiquitously occurring GRXs that encode variants of a CPYC or a CGFS motif in the active center, land plants also possess CCxC/S-type GRXs (named ROXYs) for which the biochemical functions are yet unknown. ROXYs physically and genetically interact with bZIP transcription factors of the TGA family. In Arabidopsis, ectopically expressed ROXY19 (originally named GRX480 or GRXC9) negatively regulates expression of jasmonic acid/ethylene-induced defense genes through an unknown mechanism that requires at least one of the redundant transcription factors TGA2, TGA5 or TGA6.</AbstractText>
<AbstractText Label="RESULTS">Ectopically expressed ROXY19 interferes with the activation of TGA-dependent detoxification genes. Similar to the tga2 tga5 tga6 mutant, 35S:ROXY19 plants are more susceptible to the harmful chemical TIBA (2,3,5-triiodobenzoic acid). The repressive function of ROXY19 depends on the integrity of the active site, which can be either CCMC or CPYC but not SSMS. Ectopic expression of the related GRX ROXY18/GRXS13 also led to increased susceptibility to TIBA, indicating potential functional redundancy of members of the ROXY gene family. This redundancy might explain why roxy19 knock-out plants did not show a phenotype with respect to the regulation of the TIBA-induced detoxification program. Complementation of the tga2 tga5 tga6 mutant with either TGA5 or TGA5C186S, in which the single potential target-site of ROXY19 had been eliminated, did not reveal any evidence for a critical redox modification that might be important for controlling the detoxification program.</AbstractText>
<AbstractText Label="CONCLUSIONS">ROXY19 and related proteins of the ROXY gene family can function as negative regulators of TGA-dependent promoters controlling detoxification genes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Li-Jun</ForeName>
<Initials>LJ</Initials>
<AffiliationInfo>
<Affiliation>Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Ning</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thurow</LastName>
<ForeName>Corinna</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wirtz</LastName>
<ForeName>Markus</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hell</LastName>
<ForeName>Rüdiger</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gatz</LastName>
<ForeName>Christiane</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0003-2741-8514</Identifier>
<AffiliationInfo>
<Affiliation>Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany. cgatz@gwdg.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>09</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003517">Cyclopentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054883">Oxylipins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000621882">ROXY19 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014283">Triiodobenzoic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6RI5N05OWW</RegistryNumber>
<NameOfSubstance UI="C011006">jasmonic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>H575A4059Q</RegistryNumber>
<NameOfSubstance UI="C052968">2,3,5-triiodobenzoic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003517" MajorTopicYN="N">Cyclopentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054883" MajorTopicYN="N">Oxylipins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014283" MajorTopicYN="N">Triiodobenzoic Acids</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Detoxification program</Keyword>
<Keyword MajorTopicYN="Y">ROXY-type glutaredoxins</Keyword>
<Keyword MajorTopicYN="Y">Repression</Keyword>
<Keyword MajorTopicYN="Y">TGA transcription factors</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>05</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>09</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27624344</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-016-0886-1</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-016-0886-1</ArticleId>
<ArticleId IdType="pmc">PMC5022239</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2008 Mar;20(3):768-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18334669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Mar;15(3):760-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Feb;170(2):989-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26662603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Nov;34(11):1970-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21726238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Jul 2;165(4):1671-1683</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24989234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 10;280(23):21867-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15824099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Apr 13;11(4):e0153216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27073862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Dec;157(4):2056-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21960138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1992 Feb;17(2):82-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1566333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 May;159(1):391-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22452854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):642-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20388663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2015 May;396(5):495-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25781542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Feb;21(2):429-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19218396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009 Mar 20;10:92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19302701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2004;79(3):305-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16328797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:205-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Oct;52(2):382-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17672839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1492-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2621-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jul;147(3):1347-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Apr;50(1):128-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Dec;26(12):4656-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25549671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Aug 9;448(7154):666-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17637675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Jul 17;6:7640</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26184543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jan;61(2):200-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19832945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1993 Apr 20;230(4):1131-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8487298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Dec 17;403(3-4):435-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21094149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Aug 01;12:125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22852874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Mar;21(5):401-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10758492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1996 Feb 5;250(2):237-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8628224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:3064</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Nov;15(11):2647-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14576289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Aug 9;448(7154):661-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17637677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):336-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Jun;6(6):863-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8061520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Apr;132(7):1555-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2009 Aug;66(15):2539-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19506802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Nov;20(11):3122-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18984675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2012 Jul;5(4):831-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22207719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Sep;151(1):253-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19605548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jul;42(12):7681-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24914054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol Report. 2015;33:624-637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26696694</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>Basse-Saxe</li>
<li>District de Karlsruhe</li>
</region>
<settlement>
<li>Göttingen</li>
<li>Heidelberg</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Basse-Saxe">
<name sortKey="Huang, Li Jun" sort="Huang, Li Jun" uniqKey="Huang L" first="Li-Jun" last="Huang">Li-Jun Huang</name>
</region>
<name sortKey="Gatz, Christiane" sort="Gatz, Christiane" uniqKey="Gatz C" first="Christiane" last="Gatz">Christiane Gatz</name>
<name sortKey="Hell, Rudiger" sort="Hell, Rudiger" uniqKey="Hell R" first="Rüdiger" last="Hell">Rüdiger Hell</name>
<name sortKey="Li, Ning" sort="Li, Ning" uniqKey="Li N" first="Ning" last="Li">Ning Li</name>
<name sortKey="Thurow, Corinna" sort="Thurow, Corinna" uniqKey="Thurow C" first="Corinna" last="Thurow">Corinna Thurow</name>
<name sortKey="Wirtz, Markus" sort="Wirtz, Markus" uniqKey="Wirtz M" first="Markus" last="Wirtz">Markus Wirtz</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000465 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000465 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27624344
   |texte=   Ectopically expressed glutaredoxin ROXY19 negatively regulates the detoxification pathway in Arabidopsis thaliana.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27624344" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020